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Resonance Frequency and Quality Factor Tuning in Electrostatic
Actuation of Nanoelectromechanical Systems
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In an electro statically actuated nanoelectromechanical system (NEMS) resonator, it is shown

that both the resonance frequency and the resonance quality (&) factor can be manipulated.

How much the frequency and quality factor can be tuned by excitation voltage and resistance

on a doubly-clamped beam resonator is addressed. A mathematical model for investigating the

tuning effects is presented. All results are shown based on the feasible dimension of the nano

resonator and appropriate external driving voltage, yielding up to 20 MHz resonance frequency.

Such parameter tuning could prove to be a very convenient scheme to actively control the

response of NEMS for a variety of applications.
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1. Introduction

NEMS (nanoelectromechanical systems) are
emerging fields of nanotechnology and various
consequential fabrications and applications have
been reported so far. Most of NEMS devices are
with nano scaled dimensions- mostly operated in
their resonant modes. In this size regime, NEMS
come with extremely high resonance frequencies,
diminished active masses, tolerable force con-
stants and high quality () factors of resonance.
These attributes collectively to making NEMS
suitable for several technological applications
such as ultra—fast actuators, sensors, and high
frequency signal processing components.
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There exist fundamental and technological
challenges to NEMS optimization. One of the
remaining challenges to developing technologies
based upon NEMS is a robust, sensitive and
broadband displacement detection method for
sub-nanometer displacements. Most displacement
sensing techniques used in the domain of micro-
electromechanical systems (MEMS) are not sim-
ply scaleable into the domain of NEMS — neces-
sitating the development of new techniques to
realize the full potential of NEMS. One typical
NEMS application is a resonator utilizing a res-
onant frequency by exciting the device with the
natural frequency (Carr and Craighead, 1997 ;
2002a; Cleland and Roukes
2002). There are several ways of exciting the

Sekaric et al.,

resonator ; electrostatic (Carr and Craighead,
1997 ; Sekaric et al.,, 2002a ; Carr et al., 2000 ;
Sekaric et al., 2002b), electromagnetic (Cleland
and Roukes 2002 ; Yang et al., 2001) and optical
way (Petitgrand et al., 2003 ; Vogel et al., 2003).
The electrostatic way has dominated a nano ex-
citation so far due to its relatively easy imple-
mentation and feasible force generation to vibrate
a clamped beam resonator.
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In this work, we introduce a nano resonator
consisting of a doubly clamped beam that is func-
tioning in the range of tens of MHz, and the res-
onant frequency shift due to the applied voltage
and external resistance is explored by an analy-
tical approach. Also, the quality factor (inverse of
damping coefficient) shift by the external resist-
ance and driving voltage (excitation voltage) is
investigated. The main issue in the electrostatic
excitation covers how much the excitation voltage
affects the stiffness of the resonator, which event
ually yields a resonance frequency shift. To in-
vestigate the resonance frequency shift in the sys-
tem with a time-dependent stiffness, a parametric
amplification (Rugar and Grutter, 1991 ; Cleland,
2003) has been reported. However, the parametric
amplification imposes the assumption that the
stiffness and the driving force (applied voltage)
should be modulated independently, which means
the modulated stiffness and the driving force can
be assigned by different frequencies along with
phase angle, respectively. In reality, the model
of the doubly clamped resonator shows that
the modulated stiffness and the driving force are
coupled, i.e., they have to keep the same frequen-
cy. The quality factor is also coupled with the
driving force. In this paper, we analyze how the
resonance frequency can be shifted under the ap-
plied voltage, and how the quality factor depends
on both the applied voltage and the resistance
inside the resonator. In order to prove the vali-
dity of the analysis several simulations have been
done.

2. Analysis

Consider a doubly-clamped nano resonator fa-
bricated by author’s team which is completed by
sequential nano fabrication processes, and those
details on the fabrication processes are explained
(Kouh et al., 2004). Utilizing an elastic continu-
ous beam analysis, construct a mechanical vibra-
tion model of a double clamped nano beam (Fig.
1). The equation of motion of the beam is

d'z__ pA 822+Fe(z, t) (1)
ox* EI o EI
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Fig. 1 Transverse motion of double clamped nano

beam

where z is the transverse movement of the beam,
E is Young’s modulus, A is the beam’s cross
sectional area, o is its mass density. Fe(z, £) is
the applied electrostatic force per unit length in
the x—direction, which will be addressed in detail.
[ is the moment of area of the beam, which is
evaluated as A#Z/12 when the beam has a rec-
tangular cross section and thickness of 7.

By a separation of variables, the solution of the
beam equation is written :

z(x, 1) =e " (me ™ + e
+ @se” P + g o)

(2)

where A, is the wave number, being determined
from the boundary conditions, and # is the index
representing a particular mode of vibration. @,
is the angular velocity at mode 7. For a clamp-
ed beam at both ends, the frequencies of normal
modes are obtained by (Yang et al., 2001)

_c L JE
et .

Each coefficient up to the third mode is given as
1=1.03, C;=2.83, and (C3=5.55, respectively.
Next, considering the infinitesimal movement

and uniformity in the longitudinal direction, the

beam can be modeled as a lumped system :

mz+ mg)o

2+ mwiz=—F. (4)

where m is the beam mass, @ is the quality fac-
tor which is inversely proportional to damping
coefficient, and @y is the beam natural frequency.
The plates consisting of the resonator become
electrically charged when a voltage is applied to
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the plates, yielding the capacitance in the charged
plates, which is given as

_ &r&owl
= d—=z (5)

where & is the permittivity in free space and it
usually takes 8.85% 1072 pF/m. &, is the relative
permittivity (for vacuum=1), and d is the initial
gap. L is the beam length, w is the beam width.
The electrostatic force exerted on a doubly clamp-
ed beam can be driven from differentiating the
potential energy by z, and it is expressed as

_ 1 ereowlL
Fom—t oLy (©

where V is the applied (excited) voltage to the
two plates. This force is a primary force to gener-
ate a resonance, which allows us to measure an
appropriate displacement in a nano scale.

In fabricating a nano beam coated with a metal,
there could be an electric passage between two
plates even if a complete fabrication has been
made. When a doped Si substrate is utilized in a
fabrication, it usually generates internal resistance
(R). An AC voltage applied to the two plates as
well as a capacitance change due to a plate vi-
bration cause a current through the plates. Now,
an equivalent to the nano resonator is shown in
Fig. 2.

Let g be the electric charge between two plates,
yielding ¢g=C V. by the capacitance C and the
capacitor voltage V.. Here, the capacitor voltage
is very close to the excitation voltage. This is
shown by the following dynamic analysis.

Fig. 2 Equivalent circuit for a nano resonator

V="V.+ l'R:%-I- iR (7)

The current on this circuit is determined as

dq

;=24 _

(VY =%(CV) —R% (8)

dt dt

Therefore, the current has the first order differen-
tial equation

RYU =4 (cy) 9)

At the steady state, the current approaches %
(CV), which implies the current is dominated by
the applied voltage V. The current passing the
capacitor depends on both the capacitance and
the applied voltage. Moreover, the capacitance
varies with time, which is different from the gen-
eral current calculation in a capacitor (C is usu-
ally regarded as constant due to a fixed gap bet-
ween two plates). Through these conditions, the
current is calculated as follows.

i=2(CcV)=CV+CV (10)
Putting the excitation voltage (V= Vac+ Vac cos
wt), where Ve, and Vg are DC and AC voltages
applied the top plate of the resonator with the
bottom plate being grounded, then the current in
Eq. (10) can be seen that

i=CV+CV
_i er&owlL
_dt< d—z >V
er&owl d
+ d—z dt

(11)
(Vae+ Ve sin wt)

Let e=¢erguwl, then the current is simplified as

e - ew Ve
Vz 4 — 5 Cos ot (12)

Here, we see that the current has a dependency on
2, which has a key to tuning the quality factor
along with an excitation voltage.
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Next, the electrostatic force (F,) exerted on the
upper plate is computed as follow.

_ L 2
Fe*2 d—2)° Ve
_1 eawl 2
2 (d—2) (V—iR) (13)
1 ereowLl
=2 d—27 (V2P—2{RV—*R?

Ve=iR<LV, so the
third term in Eq. (13) can be negligible. Substi-
tuting Eq. (12) into Eq. (13), the electrostatic
force can be approximately written as

In a nano scale resonator,

~_ 1 & _;
Fe: ) <d—z)2 <V2 2ZRV)
__L & _ & .
= 2‘(4—;;)2(‘/2 RV S e (14
+2RV i;"v“c cos(a)t>>

Again, the third term in Eq. (14) is much less
rather than the first or second term because it has
only (d
a nano resonator is in the range of nm) which

1 1
(d—2) ~(d—2)"

nano scale dimension, and relatively small Vg

—z) term in the denominator ((d—2z) in

on the condition of

implies
compared to DC voltage (V). The relatively
small value of Vg is explained as follow. To
drive/detect NEMS resonance and other RF ap-
plications, we have to use RF function generator
However these RF
instruments have limitations in providing PF

and/or network analyzer.

power. (in RF world everything is respect to

50 ohms. Power= and dBm is the relative

50
power from 1 mW). For example, the RF signal

generator we have has a maximum RF power of
14 dBm and the network analyzer up to 13 dBm,
which is corresponding to 1 V. So we can only
drive NEMS within the power limit of these
instruments. There are several reasons for this
power limitation such as heating of the oscillator
inside of the instrument. And as we mentioned
before, one of the purpose of miniaturization is to
reduce the power level we are applying.
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Finally, the electrostatic force is expressed as

F=—t 5 (V*—2RV?

2 d-2° )22> (15)

(d—

Now, substituting the derived electrostatic force
in Eq. (15) for the beam dynamic equation of Eq.
(4), it can be expressed as

. Mo .
mz+ QOZ‘I'WlCUgZ:_Fe

_1_ eV
2 (d—2)°*

REVE (16)
(d—2)*~

The terms in the right side in Eq. (16) have non-
linearity in terms of z, and 2, but these can be
linearized by employing a linearization techni-
que, which is quite meaningful in a nano res-
onator with respect to its infinitesimal displace-
ment change. Then, the linearized dynamics of the
nano resonator can be seen that

mz+ m(soo 2+ mawiz

(17)
RYa 1
f7< 7 >5V2 R& V2<d52+d42>

The resonator has a standard form after arranging
terms of z and 2:

2
mlz’-i—( mg;a +R§4V >z
eV?  4RV?

)z (18)

+<mw3*

= 2;z eV?

It is implicative that the quality factor and the
stiffness are affected by the external excitation
voltage and the resistance. Viewing Eq. (18), we
define an effective quality factor and resonance
frequency which is shifted from the fundamental
quality factor (@) and frequency (wo),
tively.

respec-

L R V?
Qeff Q Wl(t)od4
(19)
o= i eV + 4R V?
T md® T md®
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As being inferred from this result, it is shown
that the resonance frequency and the quality fac-
tor are shifted by both applied voltage and resist-
ance. However, the excitation voltage consists of
AC (time-varying) and DC components, hence
it makes the direct use of Eq. (19) difficult to
calculate the variations of frequency and quality
factor. From now on, how effectively the applied
voltage consisting AC voltage (Vi) and DC
voltage (Va), contributes to the resonance fre-
quency change is investigated. The applied vol-
tage is given by
V= Vgc +2 Ve Vae cos wt

V2 (1—cos 2wt) (20)
2

+

As stated before, due to the power limitation of a
network analyzer (an excitation instrument), the
amplitude of V. needs to be set much lower than
DC voltage. Thus V? can be approximated as

V2: Vgc 42 Ve Vac cos wt (2])

From this voltage representation in Eq. (21), the
beam equation of Eq. (18) ends up with

mo R(iz
Q T4
+<mw§—<%—€;§> (V2 +2 Ve Ve cos () )>z
(22)
:2—22( Vgc +2 VdVac COS(CUﬁ)

=mZ+ (k+2k cos wt) 5+ (ks+2ks cos wt) z
=ks+2ks cos wt

mz-l—( (Vgc +2VchacCOS(C()t)>>Z

where
2
klz meO + 12,84 Vc?c . kzz 1;{::‘2 Vchac
k3=mw3*<%* 45562 > e
23)
. e 4RE (
k4* - <?_7> Vdc Vac
€ &

kSZTdZ Vgc s kGZsz Viac Vac

Seeing the stiffness and the quality factor, it is
imperative to understand those depend on AC,
DC voltage, and resistance in the resonator. Tak-
ing a glance at Eq. (22), the increment of AC and

DC voltage makes the resonance frequency be less
than the natural frequency of the resonator (free
vibration) even if the correct calculation of the
shift remains unclear due to the cos(w?) term.
Moreover, the resistance seems to affect the qual-
ity factor to be less than that of the system without
resistance.

Now, we try to analyze quantitatively how
much the voltage and resistance have an influence
on the resonance frequency and the quality factor
by solving the system. Let the solution of the
system be

2(t) =Ae ™ +Be™+D (24)

where A, B, and D are complex values depend-
ing on the excitation frequency w. Substituting
Eq. (24) into Eq. (22), performing'algebraic cal-

wt —iwt
%, the

equation comprising of e™?, ¢~™*, and a constant

culations, and replacing cos w{=

(€% can be rearranged. Retaining the ™ term it
is found to be

—mw*A—ikiwA+ksA+kiD=ke (25)
For the e™? term, it is found to be
—ma&’B+ikiwB+ksB+kiD=ks (26)
For a constant (&%) term, it is expressed as
ksD+ (ki—iksw) A+ (iksw+ k) B=Ks (27)

Then the above three equations Eqs. (25-27) are

represented as a matrix form :
Li(w) 0 L4l A ks
0 L:(w) La|| B|=| ks (28)
Ls(a)) L6<CU> Ls D ko

where all elements are given as

Li(w) =—mao*—ikio+ks
Lo:(w) =—mao*+ikio+ ks
L3(a)> =ks
Li=F
Ls(w) =ki— ik
L¢(w) =kitikw

(29)
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The coefficients A, B and D are computed as
follows from Eq. (28)

L, (Lske - L4k5)

A=
L] (Lst - L4L6) - L4L2L5
Ll (LSkG - L4k5)
B= 30
Ly(LsLs—LsLe) —LsL,Ls G0
o —ks(LoLst LiLo) +LiLoks

"~ Li(LsLs—L4Le) —L4LoLs

Here, the common denominator of A, B and D,
which is a determinant of the matrix in Eq. (28),
yields the simplified form

Li(LoLs—L4Le) —LaL2Ls
=ky[ (—ma?+ks) + ki o]

—2 [/&1 ( - WLC{)2 + ks) + k4k1k2(1)2:|
=:ksG () —2ksG (@) + (kski—2ksbr o) &

(31)

where G (@) =— ma?*+ ks. It is seen that G (w) =
0 in Eq. (31) makes the determinant be close to
the minimum. The true minimum value is cal-
culated later. The corresponding frequency achi-
eving the approximate minimum of the deter-
minant almost gives rise to the resonance at the
values of A, B, and D, almost maximizing the
displacement of beam z(¢). By the condition of
G(w) =0, and the stiffness £=mw?, the shifted
resonance frequency (w.) is determined as

e

—ab (1~ ) &)

More accurately, the minimum value (@) consi-

(32)

dering all terms in Eq. (31) can be determined as

sk Kk ke
" m 2mE kem o o

(33)

Comparing with two frequencies (@ and wn),
there is not much discrepancy between them since
the first term in Eq. (33) is dominant and the
others are extremely small in a nano scale res-
onator, eventually closely equal to Eq. (32). As
a consequence, the resonance frequency in a
nano resonator adopts the result of Eq. (32)
for a brevity of calculation, which is shifted by
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cy of the original beam (wo). In other words, the

>Vfc from the resonance frequen-

increment of DC voltage makes the resonance be
less than the natural frequency of the nano beam,
but the resistance affects it reversely.

Figures 3~5 show the time responses under
different excitation frequencies, ensuring that only
resonance appears at resonance frequency (@)
and other off-resonance frequency excitations
show the displacement damps out as time goes on.

The nano resonator taken for consideration here
has 400 nm thickness, 10 gm length, and 1 xm
width. The magnitude of the driving AC voltage

Fig. 3 Time response of nano beam with an ex-
citation frequency w=>5w,

A5k |

7 83 a3 04 b5 48 OF 0§ e 9

Fig. 4 Time response of nano beam with an ex-
citation frequency w=w.
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is given by 0.5 V, which is about 7 dBm in power,
being within the power limitation in a network
analyzer (13 dBm). DC voltage varies from 1V
to 14 V, mainly attributing to a static deflection of
the beam, which corresponds with the condition
that the AC voltage is much smaller than the DC
voltage. The other mechanical properties are se-
lected as E=107*10°Nm? 0=2330 kg/m?®, ¢,=
200nm d=400nm L=8 ym w=1 pum, & =1,

&=8.85 pF/m. It is crucial that the parametric
20 wo
3 5
the electrostatic resonator, resulting in a forced

resonance <2wo, ) does not appear at
vibration problem. These results show difference
from the parametric resonance case (Carr et al.,
2000 ; Cleland, 2003) because the effective stiff-
ness (original stiffness+applied sinusoidal vol-
tage) is surly coupled with the driving force. The
“coupled” here means that the time-variant stiff-
ness and the driving force can not be modulated
independently, being contrary to the assumption
adopted in (Rugar and Grutter, 1991 ; Cleland,
2003).

Fig. 6 shows the frequency response of the co-
efficient A in Eq. (30). Viewing the result, the
resonance frequency is decreased as Vg increases
for a fixed resistance, which is already proved
analytically before. Fig. 7 shows the resonance
frequency change according to the Vi variations.
As expected, the frequency decreases as Ve in-

B 01 0 %3 o4 B5 @8 &7 o8 oF 4
birna [eec]
Fig. 5 Time response of nano beam with an ex-
citation frequency w=2w.
(one of the parametric resonances)

creases. However, the resistance dose not affect
the resonance frequency noticeably, which is prov-
ed by calculating each term in Eq. (32). For given

wo=1.34%10rad/sec and R=105 ohms, each

term in Eq. (32) has ma?=69.8, SZ? =8.1,

M—&z* 1073, respectively. The effect on

=
the stiffness by excitation voltage, as shown at

the third term in Eq. (32), is extremely smaller
than the first or the second term. Therefore, the
third term can be negligible, and the effect on
the resonance frequency by resistance is verified
in Fig. 8. The experimental results on resonance
frequency shift are shown in (Pourkamali et al.,
2003).

0,
am
|
i Weica iV
T % 1} r T
00
=
= i
e
2 !
b T T T TR L A
-4 e

Fig. 6 Resonance frequency shift due to the varia-
tion of Vi

Fig. 7 Relationship between Ve and resonance fre-
quency
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Fig. 8 Quality factor change due to the resistance
variation (gap d=200 nm)

The quality factor is also affected by DC vol-
tage and resistance, and new quality factor is
determined from /4 in Eq. (23) as

1 _ 1, REVEL
Q: Q + maod* (34)

Therefore, the DC voltage and the resistance de-
crease the quality factor. Fig. 8 shows the quality
factor change as the resistance varies, from which
the resistance is considered as a dominant factor
to induce the change. If the driving frequency is

such that ﬂz#, which corresponds to the
Wo— W Qc

amplitude of —— times of the maximum res-

onance magnitude. This allows the measurement
of the quality factor . by direct measurement of
the resonance peak from the resonance frequency
diagram. The quality factor in Fig. 8 is around
900~5000, and the quality factors for each case
are shown in Table 1. To show more distin-
guishable change, the gap is set by 200 nm from
the original 400 nm. On the other hand, V is not
effective in the quality factor. As for a beam with
larger width and length, and smaller gap, and
with high resistance and high voltage source, it is
adequate to claim that the quality factor can be
decreased considerably viewing Eq. (34). Again,
if R=0, then there is no change on the quality
factor even if voltage is applied.

Finally, if an internal resistance (a sort of
extrinsic dissipation under incomplete insulation
between the substrate and the beam) exists in-
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Table 1 Quality factors for various resistance and

DC voltage
Resistance Ve Q. (quality factor)
I M Ohm 10V 4620
5 K Ohm 10V 924
1 K Ohm 14V 2294
100 Ohm 14V 2294

herently in a nano resonator it gives rise to a
change on a quality factor along with an ex-
citation voltage. On the other hand, the resonance
frequency is mainly affected by Vg rather than
the resistance.

3. Conclusions

A theoretical study on a nano resonator is
addressed, and out of plane fundamental res-
onance of silicon NEMS with dimensions as
small as 10 zm X400 nm X 1000 nm is considered.
It is shown that the resonant frequency is about
21 MHz and quality factor lies in the range of
900 < Q <5000.

The nano resonator considered in this article
excludes a parametric resonance requiring an in-
dependent modulation between time-varied stiff-
ness and driving force (applied voltage), resulting
in a resonance frequency and a quality factor
shifts under applied DC voltage, and resistance
on the two plates. The validity of the analysis
on the tuning of the resonance frequency and
quality factor are verified through simulations.
The applied DC voltage and the inherent resist-
ance on the resonator should be precisely selected
in designing a nano resonator by considering the
shift on the resonance frequency and the quality
factor. As long as the precise tuning of the res-
onator is carried out, the more accurate measure-
ment is accomplished in the applications of a
nano resonator.
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